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Abstract 

How compound words are processed remains a central question in research on Chinese reading. 

The Chinese Reading Model assumes that all possible words sharing characters are activated during 

word processing and these activated words compete for a winner [Li, X., & Pollatsek, A. (2020). An 

integrated model of word processing and eye-movement control during Chinese reading. 

Psychological Review, 127(6), 1139–1162]. The present studies aimed to examine whether embedded 

component words compete with whole compound words in Chinese reading. In Study 1, we analyzed 

two existing lexical decision databases and revealed inhibitory effects of component-word frequency 

and facilitative effects of character frequency on the first components. In Study 2, we conducted two 

factorial experiments to further examine the effects of first component-word frequency, with character 

frequencies controlled. The results consistently indicated significant inhibitory effects of component-

word frequency. Collectively, these findings support the theoretical proposition that both component 

words and compound words are activated and engage in competition during word processing. This 

provides a new approach to compound word processing in Chinese reading and a possible solution to 

mixed results of character frequency effects reported in the literature. 

Keywords: reading, compound word processing, lexical decision, Chinese 

 

Statements of public significance: This study demonstrated that Chinese compound words were 

processed in a competitive way between whole word and embedded component words. In addition to 

robust whole-word frequency effects, the component words have inhibitory effects due to 

competition. 
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Competition Between Parts and Whole: A New Approach to Chinese 

Compound Word Processing 

A compound word is a morphologically complex word binding together two or more morphemes 

(such as snowball from snow and ball); most morphemes of compound words can be used as 

independent words in sentences. In recent decades, whether compound words are processed via full 

form or components has been extensively studied in alphabetic writing systems such as English, 

Finnish, Dutch, Spanish and Basque (e.g., English: Andrews, 1986; Finnish: Pollatsek et al., 2000; 

Dutch: Kuperman et al., 2009; Spanish and Basque: Duñabeitia et al., 2007). Meanwhile, compound 

words account for more than 70% of Chinese vocabulary (Beijing Language Institute, 1986). Therefore, 

an important research question for Chinese reading is how compound words are processed. Previous 

studies have shown script-specific mechanisms of compound word processing (Li et al., 2022). 

However, as we will review below, how Chinese readers process compound words is not fully 

understood, and some recent findings are mixed (Cui et al., 2021; Tsang et al., 2018; Yu et al., 2021). 

This study investigates the mechanism of compound word processing in Chinese reading, aiming to 

address the long-standing debate regarding whether Chinese words are processed in a holistic or 

decompositional manner. 

Compound Word Processing in Alphabetic Writing Systems 

Before turning to compound word processing in Chinese, it is instructive to consider findings and 

theories in alphabetic writing systems, where lexical decision tasks (LDT) and natural reading tasks 

are commonly used (Balota & Chumbley, 1984; Taft & Forster, 1976). In LDT, participants quickly 

identify whether a string is a word or nonword, with response times (RTs) and accuracy rates as key 

metrics (Meyer & Schvaneveldt, 1971). Natural reading tasks, on the other hand, focus on eye 
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movements to measure word processing difficulty (Rayner, 1998; Rayner & Duffy, 1986). 

Three primary theories—holistic processing, decompositional processing, and dual-route 

processing—have been proposed to understand how compound words are recognized in alphabetic 

writing systems. The holistic processing theories argue that compound words are stored and retrieved 

as single units, supported by evidence of whole-word frequency effect showing faster recognition for 

more frequent whole words (e.g., Giraudo & Grainger, 2000; Hyönä & Olson, 1995; Kuperman et al., 

2008). In contrast, the decompositional processing theories argue that compound words are broken 

down into their components for processing (Taft & Forster, 1975, 1976; Zhang & Peng, 1992). Studies 

supporting this theory have revealed component frequency effects that high-frequency components 

lead to shorter reading times (e.g., Bien et al., 2005; Hasenacker & Schroeder, 2019; Kuperman et al., 

2009). The dual-route models posit that both processes operate in parallel, with the faster route taking 

precedence (e.g., Baayen & Schreuder, 2000; Caramazza et al., 1988; Schreuder & Baayen, 1995). 

Some factors like word length can affect the race: shorter words tend to be processed holistically, while 

longer words are often decomposed (Bertram & Hyönä, 2003; Hyönä & Pollatsek, 1998; Pollatsek et 

al., 2000). In summary, both whole-word and component frequencies affect compound word 

processing, and dual-route models offer the most comprehensive explanation for these findings 

(Caramazza et al., 1988; Pollatsek et al., 2000). 

Properties of the Chinese Writing System 

Chinese is a logographic writing system with many unique properties that distinguish it from 

alphabetic writing systems. One is that Chinese characters primarily convey semantic information, 

although they also carry phonological information. There are more than 5,000 characters in Chinese, 

each of which is a writing unit representing a single morpheme and syllable, except in a few 
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multicharacter monomorphemic words such as “蝴蝶” (meaning butterfly), in which two characters 

together represent a morpheme. Furthermore, there are no spaces to demarcate words within a sentence. 

A Chinese word can be composed of one or more characters. Compared to words in alphabetic 

writing systems, the mean length of Chinese words is shorter, and the variance is smaller. Based on 

the frequencies of the 56,008 listed words in one lexicon (Lexicon of Common Words in Contemporary 

Chinese Research Team, 2008), 6% of Chinese words are one character long, 72% are two characters, 

12% are three characters, 10% are four characters, and less than 0.3% of the words are longer than four 

characters. The relationship between characters and words is complex. Most Chinese characters are 

one-character words; however, they can be combined with other characters to form compound words. 

For example, the character “人” is a word by itself (meaning people), but it can also constitute multi-

character words with other characters (such as “人群” [meaning a lot of people], “陌生人” [meaning 

stranger], “出人意料” [meaning unexpected]). There are two types of frequency associated with one 

character. One is character frequency, calculating every occurrence of the character, whether the 

character is an individual word or embedded in a longer word. The other is word frequency, referring 

to the occurrence of the character when it is used alone as an individual word. As a concrete example, 

in a corpus (Cai & Brysbaert, 2010), the character “人” appears 373,292 times, and the corpus contains 

46.8 million characters; thus, the character frequency of “人” is 7,969 occurrences per million. On the 

other hand, the one-character word “人” appears 194,914 times (far less than the number of times the 

character “人” appears because “人” also appears as a part of other longer words). The corpus contains 

33.5 million words, and thus, the word frequency of the one-character word “人” is 5,810 occurrences 

per million. In practice, there is a high correlation between the word frequency and the corresponding 

character frequency (r >.80 in the following analysis). In the rest of the paper, we will refer to the word 
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frequency of one-character words as component-word frequency, as we are considering characters 

embedded in a compound word as its components, that is, the word frequency of the components. For 

example, the component-word frequency of “人” in “人群” is the word frequency of the single-

character word “人”. Notably, the component-word frequency is not specific to the character position 

in compound words. 

The visual salience of morphemes and words in written Chinese is different from that in 

alphabetic scripts. In written English, for example, morpheme boundaries in a compound word can 

hardly be identified simply with visual cues, but a space unambiguously separates two words. In 

contrast, morphemes are visually salient in written Chinese. This is because in Chinese, one 

morpheme corresponds to one character most of the time, and each character is visually represented 

in a uniformly sized box. However, when reading sentences, no apparent cues exist between Chinese 

words varying in length, and thus, words cannot be segmented simply with visual cues. 

These differences between the Chinese writing system and alphabetic writing systems possibly 

require different models of compound word processing. For example, Chinese compound words are 

horizontally shorter so that they are more likely to be processed via the full-form route, according to 

the dual-route model (Caramazza et al., 1988; Pollatsek et al., 2000). Alternatively, because Chinese 

morphemes are visually salient, decomposition of compound words into individual components 

could be more likely. The following section reviews some evidence for or against 

holistic/decompositional processing of Chinese compound words. 

Previous Findings of Chinese Compound Word Processing 

Character Frequency Effects 

As with studies of other languages introduced earlier, whether Chinese compound words are 
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accessed in a holistic or decompositional manner has been investigated by examining the effects of 

whole-word frequency and character frequency (Cui et al., 2021; Li et al., 2014; Ma et al., 2015; Peng 

et al., 1999; Sun et al., 2018; Taft et al., 1994; Tsang et al., 2018; Tse & Yap, 2018; Xiong et al., 2022; 

Yan et al., 2006; Yu et al., 2021; Zhang & Peng, 1992; see Table 1). In lexical decision tasks, whole-

word frequency effects have been consistently found, while mixed findings of character frequency 

effects have been reported (Peng et al., 1999; Taft et al., 1994; Xiong et al., 2022; Zhang & Peng, 

1992). In Zhang and Peng (1992), facilitative whole-word and character frequency effects were found 

in separate experiments. Response times were shorter when the whole-word frequency of the target 

was higher. Response times were also shorter when the frequency of the embedded components of the 

target word was higher. When both frequency effects were examined within one experiment, 

interactions between character frequency and compound word frequency were found, although the 

interaction patterns differed from one study to another (Tse & Yap, 2018; Wang & Peng, 1999). Peng 

et al. (1999) used a factorial design and found facilitative character frequency effects only for frequent 

compound words. In contrast, Tse and Yap (2018) conducted a regression analysis which contained 

18,983 two-character words, and they found a facilitative character frequency effect that was stronger 

for words with low whole-word frequency.  

Some other lexical decision studies revealed inhibitory character frequency effects, showing 

longer RTs for words comprising more frequent characters (Tsang et al., 2018; Sun et al., 2018; Xiong 

et al., 2022). In a mega lexical-decision study of more than 10,000 simplified Chinese words (Tsang 

et al., 2018), an inhibitory character frequency effect was found after accounting for the number of 

words the character can form. Notably, the variable in the above studies was the average character 

frequency within a multicharacter word instead of the separate character frequency for each component. 
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Sun et al. (2018) conducted a reanalysis of two existing lexical decision databases (CLP, Tse et al., 

2017; MELD-SCH, Tsang et al., 2018), distinguishing first and second character frequency. Regression 

analyses initially revealed inhibitory character frequency effects of either component. However, a 

subsequent post hoc analysis that employed principal components as predictors—instead of using raw 

variables—revealed facilitative character frequency effects. Sun et al. posited that the initial inhibitory 

results were artifacts stemming from collinearity in the models, and they concluded that the character 

frequency effects were facilitative. Nevertheless, in a recent study strictly manipulating whole-word 

frequency and first character frequency of compound words, Xiong et al. (2022) observed inhibitory 

effects of first character frequency, but only for low-frequency words. They speculated that the 

reversed character frequency effects might stem from the influence of neighborhood size and/or 

frequency.  

Eye-tracking studies, like lexical decision research, consistently show facilitative whole-word 

frequency effects during sentence reading, with high-frequency compound words being read faster 

than low-frequency compound words (Li et al., 2014; Ma et al., 2015; Sun et al., 2018; Tsang et al., 

2018; Yan et al., 2006; Yu et al., 2021). However, findings of character frequency effects are mixed 

(see Table 1 for summary). Although Yan et al. (2006) found that the fixation durations on compound 

words were longer when their first character frequency is low, other studies revealed shorter times for 

words containing high-frequency first characters (Cui et al., 2021; Xiong et al., 2022; Yu et al., 2021). 

Still others did not find significant character frequency effects (Li et al., 2014; Ma et al., 2015).  

In summary, given the mixed findings of character frequency effects in previous studies, it is hard 

to conclude whether Chinese compound words are processed in a holistic or decompositional manner.  
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Table 1 

A Summary of Studies Examining Character Frequency Effects in Chinese 

Studies Paradigm Character frequency effects Effect size 

Interaction with 

whole-word 

frequency 

Peng et al. 

(1999) 
lexical decision 

facilitative effects of character 

frequencies for both characters 

high-frequency words: d = -

0.41; low-frequency words: d = 

-0.03 

significant only 

for high-

frequency 

words 

Sun et al. 

(2018) 

mega lexical 

decision 

inhibitory effects of raw character 

frequencies for both characters  

facilitative effects of principal 

components corresponding to each 

character frequency for both characters 

raw character frequencies: β = 

0.01 

principal components: 

unavailable 

not examined 

Taft et al. 

(1994) 
lexical decision 

facilitative effects of character 

frequencies for both character 

unavailable 

not manipulated 

Tsang et al. 

(2018) 

mega lexical 

decision 

inhibitory effects of residual first 

character frequency after accounting for 

number of words formed 

β = 0.06 

not examined 

Tse and Yap 

(2018) 

mega lexical 

decision 

facilitative effects of character 

frequencies for both characters 

β = -0.08 stronger for 

low-frequency 

words 

Xiong et al. 

(2022) 
lexical decision 

inhibitory effects of first character 

frequency 

high-frequency words: d = -

0.03; low-frequency words: d = 

0.18 

only for low-

frequency 

words 

Zhang and 

Peng (1992) 
lexical decision 

facilitative effects of character 

frequencies for both characters 

d = -0.43 
not manipulated 

Cui et al. 

(2021) 
sentence reading 

inhibitory effects of first character 

frequency 

no significant effects of second 

character frequency 

high-frequency words: d = -

0.08; low-frequency words: d = 

0.11 

high-frequency words: d = -

0.05; low-frequency words: d = 

-0.08 

significant only 

for low-

frequency 

words 

Li et al. 

(2014) 

sentence reading 

(corpus analysis) 

no significant effects of average 

character frequency 

d = 0.11 

not examined 

Ma et al. 

(2015) 
sentence reading 

no significant effects of first character 

frequency 

d = 0.18 

not manipulated 

Xiong et al. 

(2022) 
sentence reading 

inhibitory effects of first character 

frequency 

lexical decision: d = -0.04; 

sentence reading: d = 0.20 

significant only 

for low-
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Note. Effect sizes were estimated based on RTs (lexical decision) or gaze duration (sentence reading). For experiments, 

Cohen’s ds were calculated using formulas Cohen’s 𝑑𝑟𝑚 =
𝑀diff

√𝑆𝐷1
2+𝑆𝐷2

2−2×𝑟×𝑆𝐷1×𝑆𝐷2

× √2(1 − 𝑟)  (Lakens, 2013); for 

mega studies, standardized regression coefficients served as indicators of effect sizes. Positive effect sizes indicate 

inhibitory character frequency effects (i.e., longer durations for higher character-frequency words), while negative 

effect sizes suggest facilitative effects (i.e., shorter durations for higher character-frequency words). 

 

Whole-Word Effects 

While it is unclear whether and how embedded characters affect compound word processing, 

much robust and consistent evidence have been reported supporting that words are generally processed 

as whole units (e.g., Li et al., 2014; Yu et al., 2021; Xiong et al., 2022). Additionally, despite the 

absence of visual cues for word boundaries in Chinese, evidence suggests that words are generally 

processed as whole units. This is supported by longer reading times when spaces or other interference 

were added between characters within each word, but not between words themselves (Bai et al., 2008; 

M. Chen et al., 2021; Li et al., 2012, 2013; Zang et al., 2013). These results suggest that Chinese 

readers do not process texts character by character. Additionally, word superiority effects in Chinese 

show that characters in words are identified faster and more accurately than in nonwords (Reicher, 

frequency 

words 

Yan et al. 

(2006) 
sentence reading 

facilitative effects of first character 

frequency 

no significant effects of second 

character frequency 

high-frequency words: d = -

0.19; low-frequency words: d = 

-0.54 

high-frequency words: d = 0.25; 

low-frequency words: d = -0.50 

significant only 

for low-

frequency 

words 

Yu et al. 

(2021) 

sentence reading 
inhibitory effects of first character 

frequency 

d = 0.22 

not significant 

sentence reading 

(corpus analysis) 

no significant effects on gaze duration; 

inhibitory effects of average character 

frequency only on total-viewing time 

gaze duration: d = 0.04; total-

reading time: d = 0.33 not significant 
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1969; Shen & Li, 2012). Thus, even without explicit boundaries between words, Chinese text appears 

to be processed holistically during sentence reading. 

Models on Chinese Compound Word Processing 

Some models, based on the interactive activation principle (McClelland & Rumelhart, 1981), 

aimed to explain compound word processing in Chinese reading. Some of these models predict 

facilitative effects of components because of excitatory connections between characters and multi-

character words (e.g., Taft & Zhu, 1997; Tan & Perfetti, 1999). Some others assume that the effect of 

characters on compound word processing depends on the properties of the word (Peng et al., 1999; 

Zhou & Marslen-Wilson, 2000). For example, the inter-intra model suggests that if a compound word 

is semantically transparent, its parts positively influence how quickly the whole word is recognized; if 

the compound word is semantically opaque, its parts make it slower to recognize the whole word (Peng 

et al., 1999). Overall, these models predict character frequency affects Chinese compound word 

processing. 

The Chinese Reading Model (CRM) proposed by Li and Pollatsek (2020) was designed to explain 

how Chinese readers recognize words and control eye movements without relying on inter-word spaces. 

The model comprises two modules: one for word recognition and another for eye-movement control. 

In the word recognition module, characters within the perceptual span are activated in parallel at the 

character level, and then they activate possible words containing these characters. Because each 

character can only belong to one word, CRM assumes that there are inhibitory lateral links between 

spatially overlapping word units. By doing so, all activated spatially overlapping words compete for 

recognition, and the word with the highest activation wins. This mechanism allows the model to 

simultaneously segment and recognize words in continuous Chinese text.  
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CRM provides a unique perspective on the mechanism of Chinese compound word processing. 

Unlike the traditional dichotomous approach, CRM centers on the competition among all activated 

words, including both single and multi-character words within the perceptual span. Compound words 

win most of the time because they receive activation from all constituent characters, and their 

activation value increases faster than the embedded single-character words. Therefore, CRM predicts 

that compound words are ultimately identified as a whole, aligning with the evidence for holistic 

processing (e.g., Li et al., 2014; Ma et al., 2015; Yang et al., 2012). Specifically, the model simulated 

the findings of word frequency effects in Wei et al. (2013), where the two-character strings are 

recognized as a whole-word in 99% of the trials. Moreover, CRM predicts that the frequency of the 

component words (i.e., the embedded characters as individual words) impacts the competitive process. 

High-frequency component words may cause more competition, prolonging the time for compound 

words to settle the competition. Further, lower-frequency compound words should be more impacted 

by the competition from the embedded component words, given that the baseline activation of these 

low-frequency compound words are lower to begin with. Therefore, a larger component-word 

frequency effect is expected when identifying low-frequency compound words than high-frequency 

component words. 

In summary, previous Chinese reading models assume that the components of a compound word 

affect Chinese compound word processing, although different models make different predictions. 

Models of decomposition processing predict a facilitative effect at the character level, while CRM 

assumes that compound words are recognized based on competition and predicts an inhibitory effect 

of the component at the word level.  

The Present Study 



13 

 

The present study aimed to investigate the mechanism of Chinese compound word processing. 

Specifically, we tested one prediction of the CRM model. According to CRM, the embedded 

components compete with the whole word at the word level, and this competition results in an 

inhibitory component-word frequency effect. Previous studies on Chinese compound word processing 

only focused on the influence of character frequency, ignoring the fact that components in compound 

words could be used independently as words and compete with compound words during reading to 

induce an inhibitory effect on compound word processing. This may explain the inconsistent findings 

using different experimental materials because the component-word frequency was seldom controlled 

previously. Although CRM was initially designed to simulate word processing during sentence reading, 

it posits that words are the units of sentence reading and contains a word processing module. The 

lexical decision task differs from sentence reading in that readers need to make decision regarding 

whether the characters make up the word. However, the initial word processing stage may be similar 

for lexical decision and natural reading. This is the reason that researchers use the lexical decision task 

to study how words are identified. Therefore, it is reasonable to assume that CRM can simulate the 

procedure of compound word processing.  

In Study 1, we analyzed the corpus data from the Megastudy of Lexical Decision in Simplified 

Chinese (MELD-SCH, Tsang et al., 2018) and Chinese Lexicon Project (CLP-Tse, Tse et al., 2017) of 

traditional characters
1
 for the lexical decision task to investigate how whole-word frequency, character 

frequency, and component-word frequency jointly affect word processing. According to CRM (Li & 

Pollatsek, 2020), in addition to whole-word frequency, components are assumed to play inhibitory 

 
1 Simplified Chinese characters are used mainly in mainland China and have fewer strokes. Traditional Chinese characters, used in 

regions such as Taiwan, Hong Kong, and Macau, are more complex and retain historical forms. The two systems differ in character 

complexity and appearance. 
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roles at the word level; according to other frameworks (Tan & Perfetti, 1999; Zhu & Taft, 1997), 

components are assumed to play facilitative roles at the character level. These predictions were 

evaluated in Study 1. In Study 2, we conducted two factorial design experiments to further examine 

component-word frequency effects on word identification with controlled character frequencies, which 

is the most important prediction of present study. According to the architecture of CRM where the 

component words compete with the whole words at the word level, we expected to observe inhibitory 

effects of compound-word frequencies. By controlling for character frequencies across conditions, 

Study 2 provide a more direct investigation of how component-word frequency affects word 

processing. 

Study 1 

Method 

Database of MELD-SCH 

MELD-SCH (Tsang et al., 2018) reported average RTs in a lexical decision task for 12,578 

simplified Chinese words, including 10,022 two-character words. Items were divided into 12 lists, and 

42 participants were assigned to each list (504 participants in total). The mean error rate was 5.19%, 

and only correctly responded trials were included when calculating the RTs. 

We analyzed RTs of the lexical decision task on compound words to investigate how they were 

affected by the following seven linguistic properties: whole-word frequency of the compound word, 

number of strokes, character frequency, and component-word frequency of the first and second 

components. While whole-word frequency and number of strokes have been shown to robustly 

influence lexical decision latencies, the effects of character frequency have been mixed, and the effects 

of component-word frequency have not been examined. Frequency data were obtained from the 
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SUBTLEX-CH frequency corpus based on simplified Chinese subtitles (Cai & Brysbaert, 2010). 

Because the present study focused on distinguishing the effects of character frequency and 

component-word frequency, we only included those two-character compound words in which the 

individual components are also words by themselves (9,565 words). Moreover, we excluded items with 

a mean error rate above 0.33 (283 words). Following the guidelines of Baayen and Milin (2010), items 

with scaled absolute residual values over three were omitted (totaling 52 words), ensuring the residuals 

approximated a normal distribution (see Appendix A). The pruning of the statistical model did not 

change the pattern of statistical effects. Ultimately, 9,230 two-character words were included in the 

analyses. Finally, as the distributions of frequencies and RTs were highly positively skewed, we applied 

log transformation with a base of 10 to these values in the subsequent analysis. However, for ease of 

interpretation, Table 2 presents descriptive statistics of raw frequency values. 

 

Table 2 

Linguistic Properties at Word Level and the Component Level 

  Whole word  First component  Second component 

 

 
Whole-word 

frequency 
 

Number of 

strokes 

Character 

frequency 

Component-

word 

frequency 

 
Number of 

strokes 

Character 

frequency 

Component-

word 

frequency 

Tsang et al. 

(2018) 

M (SD) 26 (195)  8.39 (3.22) 698 (1,944) 395 (2,004)  8.16 (3.26) 768 (1,768) 364 (1,686) 

Range 0.06-11,080  1-23 0.06-43,957 0.03-50,155  1-25 0.06-43,957 0.03-50,155 

Low level 0.80  6 48 6.73  6 79 10 

Medium level 2.74  8 174 31  8 257 37 

High level 10  10 591 119  10 727 134 

Tse et al. 

(2017) 

M (SD) 18 (165)  11 (4.42) 764 (1,982) 431 (1,949)  11 (4.48) 838 (1,872) 415 (1,793) 

Range 0.06-11,080  1-30 0.11-43,957 0.06-50,155  1-33 0.13-43,957 0.06-50,155 

Low level 0.45  7 61 9.66  7 80 11 

Medium level 1.55  10 203 38  10 263 43 

High level 5.93  13 647 143  13 763 149 

Note. Frequencies (per million counts) were based on SUBTLEX-CH (Cai & Brysbaert, 2010). The number of strokes was 
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counted for each component in a word separately. Low level = 25th percentile; medium level = 50th percentile; high level = 

75th percentile. 

 

Database of CLP-Tse 

CLP-Tse (Tse et al., 2017) reported average RTs in a lexical decision task for 25,286 traditional 

Chinese two-character compound words. Items were divided into 18 lists, and 33 participants were 

assigned to each list (594 participants in total). The mean error rate for words was 11.67%, and only 

correctly responded trials were included when calculating the RTs. 

Although the words in CLP-Tse were written in traditional Chinese, which is visually more 

complex than simplified Chinese, it has been verified that simplified-character-based frequency 

measures explain slightly more variance in lexical decision RT than traditional character-based 

frequency measures (Tse et al., 2017). As a result, when analyzing CLP-Tse, the number of strokes 

was counted based on the form of traditional Chinese, and all other frequency measures were obtained 

from the SUBTLEX-CH frequency corpus (Cai & Brysbaert, 2010). 

The analysis of CLP-Tse is trial-based, and there are 1,668,876 trials in the raw dataset, containing 

25,286 different two-character words. First, we preprocessed the data based on items. Similar to the 

preprocessing of MELD-SCH, we only included those two-character compound words in which the 

individual components are also words by themselves (18,533 different words). Moreover, we excluded 

words with a mean error rate above 0.33 (816 words). Then, trials with RTs longer than 2,500 ms or 

shorter than 200 ms were excluded (7,189 trials). Since the distribution of RTs was positively skewed, 

log-transformation was applied to reduce skewing. Next, as recommended by Baayen and Milin (2010), 

we removed 725 words whose scaled absolute residual values were over three to make the residuals 
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approximately normally distributed (see Appendix A). The pruning of the statistical model did not 

change the pattern of statistical effects. Ultimately, 586,742 trials that contained 17,717 two-character 

words were included in the analyses. Finally, as the distributions of frequencies and RTs were highly 

positively skewed, we applied log transformation with base 10 to these values in the subsequent 

analysis. However, for ease of interpretation, Table 2 presents descriptive statistics of raw frequency 

values. 

Analyses 

The available data of MELD-SCH were based on items instead of including every response of 

each participant, so we fit linear regression models to the item-based average RTs in MELD-SCH. 

Meanwhile, we fit linear mixed-effects models to the trail-based RTs in CLP-Tse using the lme4 

package for R 3.6.3 (Bates et al., 2015; R Development Core Team, 2020), with subject and word as 

random factors. Although the model was initially structured with a maximal random factor, 

convergence issues necessitated the removal of all random slopes. Consequently, the final model 

retained only random intercepts. The whole-word frequency of the compound word, number of strokes, 

character frequencies and component-word frequencies of each component were included as predictors 

in multiple linear regression models fitted for datasets of MELD-SCH, and they were included as fixed 

factors in linear mixed-effect models fitted for datasets of CLP-Tse in initial analyses. Models were 

constructed in which all predictors (whole-word frequency, numbers of strokes, character frequencies, 

and component-word frequencies) entered simultaneously. The inter-correlations and variance 

inflation factors (VIFs) are shown in Appendix A. VIF is a measure of the severity of the 

multicollinearity problem in multiple linear regression models. Generally, if VIF is greater than 10, 

then multicollinearity is high (Kutner et al., 2004), and a cutoff of five is also commonly used (Sheather, 
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2009). In the current study, all VIFs were smaller than 5 in the model fitted for MELD-SCH, and all 

VIFs were smaller than 4 in the model fitted for CLP-Tse. Q-Q plots for the dependent variables and 

the residuals and residual plots of predicted values against residuals indicated that the assumptions of 

normal distribution and homoskedasticity were approximately satisfied (see Appendix A). Furthermore, 

the interaction terms between whole-word frequency and character frequency as well as whole-word 

frequency and component-word frequency were included in the second step. We included the 

interaction terms because some previous studies have shown interactive effects between whole-word 

frequency and character frequency (Cui et al., 2021; Tse & Yep, 2018; Peng et al., 1999; Wang & Peng, 

1999; Yan et al., 2006). All independent variables were mean-centered and standardized (Ford et al., 

2010). When the interaction term was significant, a simple slope analysis was conducted using GAMLj 

for jamovi 1.8 (Gallucci, 2019).  

Transparency and Openness 

The code of analysis can be retrieved from https://osf.io/cs9qv/?view_only=d3a690a90602

4821a6a22bb5374be10c, and the dataset of MELD-SCH (Tsang et al., 2018) and CLP-Tse (T

se et al., 2017) are available by corresponding the authors of the database. 

Results 

The model accounted for 39.73% of the variance in the data of MELD-SCH2. As shown in Table 

3, some classic effects of linguistic properties were found in the models. For both MELD-SCH and 

CLP-Tse, the regression coefficient of whole-word frequency was negative, indicating that RTs for 

high-frequency words were shorter than those for low-frequency words (for MELD-SCH, β = -0.075, 

 
2 We constructed the linear mixed-effects model to fit the data of CLP-Tse, and therefore, R² is not available in the 

analysis. When averaging RTs of participants for each word, the linear regression model accounted for 38.1% of the 

variance in the data of CLP-Tse. 
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t = -70.30, p <.001; for CLP-Tse, β = -0.053, t = -94.58, p <.001). Notably, the effect size of whole-

word frequency on RTs is much larger than that of any component property, as indicated by regression 

coefficients. The regression coefficients of the number of strokes for both characters were positive, 

indicating that RTs for words with visually complex characters (with more strokes) were longer than 

those for words with simple characters (for MELD-SCH, βs > 0.005, ts > 4.95, ps <.001; for CLP-Tse, 

βs = 0.004, ts > 6.62, ps <.001). 

Most interestingly, the component-word frequency and character frequency of the component 

showed opposite effects. Specifically, in both models, the regression coefficients of first component-

word frequency were positive, indicating that compound words containing a high-frequency first 

component word were identified more slowly than those with a low-frequency first component word 

(for MELD-SCH, β = 0.012, t = 6.13, p <.001; for CLP-Tse, β = 0.009, t = 8.66, p <.001). In contrast, 

the regression coefficients of the first character frequency were negative, suggesting shorter RTs in 

lexical decisions to compound words with higher first character frequency (for MELD-SCH, β = 0.008, 

t = -3.89, p <.001; for CLP-Tse, β = -0.011, t = -10.44, p <.001). However, the frequency effects of the 

second component were less robust. In the model fitted for MELD-SCH, no significant effect was 

found for the component-word frequency or character frequency of the second component (for second 

component-word frequency, β = 0.006, t = 1.20, p =.231; for second character frequency, β = 0.001, t 

= 0.46, p =.647); in CLP-Tse, both inhibitory component-word frequency and facilitative character 

frequency effects of the second component were significant (for second component-word frequency, β 

= 0.006, t = 6.64, p <.001; for second character frequency, β = -0.008, t = -7.73, p <.001), namely, RTs 

were longer with increasing component-word frequency or decreasing character frequency of second 

components. 
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To further investigate whether whole-word frequency would moderate component frequency 

effects, including character frequency and component-word frequency, we constructed new models 

with interactions. In the model fitted for the data in MELD-SCH, both first and second component-

word frequencies interacted with the whole-word frequency significantly (first component: β = 0.004, 

t = 2.23, p =.026; second component: β = 0.004, t = 2.14, p =.033). Subsequent simple effect analyses 

were conducted setting component-word frequency as a simple effects variable and whole-word 

frequency as a moderator. Moderators were set to three levels, namely, the 25th, 50th, and 75th 

percentiles, representing low-, medium-, and high-frequency levels, respectively; the corresponding 

values are shown in Table 2. In this way, after controlling the effects of other variables, the simple 

slopes of component-word frequency (the effect of component-word frequency) computed for low-, 

medium-, and high-whole-word frequency were obtained and are shown in Figure 1. For first 

component-word frequency, an inhibitory effect was observed for compound words of all frequency 

levels, and this effect increased with whole-word frequency (low-frequency: t=3.01, p =.003; medium-

frequency: t = 5.03, p <.001; high-frequency: t = 5.69, p <.001). For second component-word frequency, 

the effects were not significant regardless of the level of whole-word frequency (low-frequency: t = -

0.95, p = .341; medium-frequency: t = 0.11, p = .911; high-frequency: t = 1.33, p = .182). Moreover, 

the interaction between first character frequency and whole-word frequency was not significant (β = 

0.001, t = 0.63, p = .527). In contrast, the interaction for second character frequency was significant (β 

= 0.004, t = 2.01, p = .044). With second character frequency as the simple effects variable, the results 

showed that the effect was not significant for low- and medium-frequency compound words, but 

inhibitory for high-frequency compound words (low-frequency: t = 0.06, p =.950; medium-frequency: 

t = 1.98, p =.194; high-frequency: t = 2.13, p =.033). 
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In the model fitted for CLP-Tse, first component-word frequency had an interaction with whole-

word frequency (β = 0.003, t = 3.06, p =.002). Simple effect analysis showed that at all whole-word-

frequency levels, the effects of first component-word frequency were always significant in a direction 

of inhibition (low-frequency: z = 4.57, p <.001; medium-frequency: z = 7.36, p <.001; high-frequency: 

z = 8.09, p <.001). Moreover, the interactions between whole-word frequency and character frequency 

were significant for the second component (β = 0.004, t = 4.05, p <.001). Facilitative character 

frequency effects were observed for words of all frequency levels, although they decreased with whole-

word frequency (low-frequency: z = -8.27, p <.001; medium-frequency: z = -7.04, p <.001; high-

frequency: z = -3.52, p <.001). Other interactive effects were not significant in the model (see Appendix 

Table A2 for more details). 

Discussion 

To investigate whether the frequency of components influence whole compound word processing, 

two datasets of Chinese lexical decisions were analyzed in Study 1. Many interesting findings were 

observed in these analyses for both datasets. First, an inhibitory component-word frequency effect was 

observed, with RTs in the lexical decision task increasing with component-word frequency regardless 

of the whole-word frequency. Second, we observed a facilitative character frequency effect, with RTs 

of the lexical decision task decreasing with first character frequencies. The effect was significant only 

for the first character in MELD-SCH, but it was significant for both the first and second components 

in CLP-Tse. Third, a whole-word frequency effect was observed, with RTs in the lexical decision task 

decreasing with an increase in whole-word frequency. Interestingly, the whole-word frequency had 

larger effects on RTs of lexical decisions than any character properties, which was reflected by 

regression coefficients. Finally, the interactions of component-word frequency and whole-word 
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frequency had a consistent pattern in the analysis of two datasets, showing increased competition at 

the word level when processing high-frequency compound words.  

In summary, when the statistical model considered both character frequency and component-word 

frequency simultaneously, they had effects in different directions. Moreover, the frequency effects of 

the first component were more stable than those of the second component, which might result from the 

left-to-right reading direction. Meanwhile, the effects found in CLP-Tse were more stable than those 

in MELD-SCH. This is possibly because there are more words in CLP-Tse, and this dataset provides 

trial-based information, which makes the consideration of variance between subjects possible. 

 

Table 3 

Regression Models for RTs 

 
Predictors 

β 95% Confidence Interval t p 

 Lower Upper 

MELD-

SCH  

(Tsang et 

al., 2018) 

Whole word Whole-word frequency -.075 -.077 -.073 -70.30 <.001 

First 

component 

Number of strokes .005 .003 .007 4.95 <.001 

Character frequency -.008 -.012 -.004 -3.89 <.001 

Component-word frequency .012 .008 .016 6.13 <.001 

Second 

component 

Number of strokes .006 .004 .008 5.40 <.001 

Character frequency .001 -.003 .004 0.46 .647 

Component-word frequency .002 -.001 .006 1.20 .231 

CLP-Tse 

(Tse et al., 

2017) 

Whole word Whole-word frequency -.053 -.054 -.052 -94.58 <.001 

First 

component 

Number of strokes .004 .003 .005 6.62 <.001 

Character frequency -.011 -.013 -.009 -10.44 <.001 

Component-word frequency .009 .007 .011 8.66 <.001 

Second 

component 

Number of strokes .004 .003 .005 7.24 <.001 

Character frequency -.008 -.010 -.006 -7.73 <.001 

Component-word frequency .006 .004 .008 6.64 <.001 
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Figure 1 

Different component frequency effects on RTs at different whole-word frequency levels 
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Study 2 

Study 1 found that character frequency and component-word frequency affect the RTs of lexical 

decisions differently when considering the two variables simultaneously. As predicted by CRM, 

components would inhibit compound word processing. One problem with examining the two effects 

in uncontrolled corpus datasets, however, is that character frequency and component-word frequency 

are highly correlated (for first component, r = 0.87 in MELD-SCH and 0.85 in CLP-Tse; for second 

component, rs = 0.83 in both MELD-SCH and CLP-Tse). Thus, the statistical issue, known as 

multicollinearity, posed a challenge to reasonably interpret the effects of component-word frequency, 

which should be interpreted with caution. To bolster the finding of component-word frequency effects 

in Study 1, we conducted two factorial-design experiments using LDT in Study 2.  

Experiment 1 

Method 

Participants. Seventy-eight native Chinese-speaking participants (57 females) from Mainland 

China with normal or corrected-to-normal vision were recruited online to participate in the experiment. 

Their ages ranged from 18 to 29 years. Given the number of words in each condition, there were 1,716 

observations per condition, which is comparable to the recommendation of Brysbaert and Stevens 

(2018). The study was approved by the ethics committee of the Institute of Psychology, Chinese 

Academy of Sciences, and the participants received a small monetary compensation for their 

participation. 

Stimuli. Whole-word frequency (medium vs. low) and first component-word frequency (high vs. 

low) were orthogonally manipulated to form four conditions. The whole-word frequency of the 

compound word was divided into medium (M = 28, range from 9–69 occurrence per million) or low 
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(M = 0.6, range from 0.1–2 occurrence per million). Similarly, the first component-word frequency—

the word frequency of the first component when it was used as a single-character word—was also 

divided into high (M = 80, range from 40–210 occurrence per million) or low (M = 1.9, range from 

0.4–3 occurrence per million). For example, in medium-frequency compound word conditions, the 

first component-word frequency of “蓝色” (meaning blue color) is high (“蓝” [meaning blue]), and 

the first component-word frequency of “危机” (meaning crisis) is low (“危” [meaning danger]). 

Similarly, in low-frequency compound word conditions, the first component-word frequency of “赌

债” (meaning gambling debts) is high (“赌” [meaning gamble]), and the first component-word 

frequency of “汽船” (meaning steamship) is low (“汽” [meaning steam]). The entire list of stimuli can 

be found in Appendix (Table B1). Except for these two factors, other character properties, including 

the number of strokes, character frequency and family size, were controlled across conditions (see 

Table 4). The frequency data were obtained from SUBTLEX-CH (Cai & Brysbaert, 2010). A total of 

88 two-character compound words were selected for four conditions, and therefore, there were 22 

different words per condition. 

There were 88 two-character non-words, which were combined with two characters by 

randomizing the second characters of all real words in the experiments. This ensured that character-

level properties were matched between words and non-words. All non-words were manually checked 

to ensure that they were not an existing word orthographically or phonologically. 

 

Table 4 

Linguistic Properties of Stimuli 

Condition 
Whole 

word 
 First component  Second component 
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Word 

frequency 

Component- 

Word 

frequency 

Whole-

word 

frequency 

 

Number 

of 

Strokes 

Character 

frequency 

Component-

word 

frequency 

Family 

size 

 

Number 

of 

Strokes 

Character 

frequency 

Component-

word 

frequency 

Family 

size 

Medium High 
26 

(15) 

 9.6 

(3.3) 

123 

(42) 

71 

(24) 

34 

(15) 

 8.3 

(3.7) 

643 

(767) 

173 

(314) 

85 

(72) 

 Low 
31 

(21) 

 9.0 

(3.0) 

113 

(82) 

1.9 

(0.8) 

28 

(13) 

 8.7 

(3.7) 

564 

(1,045) 

95 

(182) 

75 

(74) 

Low High 
0.62 

(0.50) 

 9.8 

(2.7) 

134 

(53) 

89 

(39) 

36 

(23) 

 7.4 

(3.2) 

323 

(360) 

82 

(129) 

81 

(63) 

 Low 
0.54 

(0.32) 

 9.2 

(2.6) 

112 

(85) 

1.8 

(0.6) 

30 

(19) 

 8.1 

(2.5) 

380 

(445) 

91 

(113) 

71 

(51) 

F 172 

 

0.35 2.18 779 0.89 

 

0.59 1.25 0.67 0.20 

p <.001 

 

.79 .10 <.001 .45 

 

.62 .30 .57 .90 

η² .86  .01 .07 .97 .03  .02 .04 .02 .01 

Note. Standard deviations are presented in parentheses. Frequency (per million counts) was based on SUBTLEX-CH (Cai 

& Brysbaert, 2010).  

 

Apparatus. This study was conducted online on Pavlovia, and PsychoPy (Peirce et al., 2019) was 

used to program and implement the experiment, recording RTs and accuracy rates. All participants 

were asked to complete the experiment in a quiet room using their own computers, of which the 

resolution was set to 1,920 × 1,080 pixels and the refresh rate was 60 Hz. Stimuli were presented in 

black 26-size Song font on a gray background in the center of the display screen one at a time. 

Procedure. Before the formal experiment, eight words and eight non-words were presented to 

help participants familiarize themselves with the task. Each trial started with a 500-ms fixation cross 

in the center of the screen, followed by a stimulus that was displayed until the participant responded 

(or 2500 ms). Participants decided whether the two-character string presented on the screen was an 

word by pressing the keyboard as quickly and as accurately as possible; participants pressed “J” for 

“Yes” and “F” for “No”. They were presented a 300-ms blank screen for their correct response or 300-

ms feedback for their incorrect response, and after another 200-ms blank screen, a new trial started. 
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Transparency and Openness. The materials, raw data, and the code of analysis in R is publicly 

available at the Open Science Framework website 

(https://osf.io/cs9qv/?view_only=d3a690a906024821a6a22bb5374be10c). 

Results 

Only responses for words in experimental parts were analyzed, including accuracy rates and RTs. 

Generalized mixed-effect models (GLMMs) were tested using the lme4 packages (Bates et al., 2015) 

in R 4.2 to analyze accuracy rates, and linear mixed-effect models (LMMs) were used to analyze RTs. 

Because of the positive skewness of the RTs, the data were log-transformed to meet the distribution 

assumption of LMMs3. In all models, whole-word frequency (medium was coded as -0.5 and low was 

coded as 0.5) and component-word frequency (high was coded as -0.5 and low was coded as 0.5) were 

entered as contrast coded fixed factors, specifying participants and items as crossed random factors. 

All models were initially constructed with a maximal random factor structure. If the maximal model 

did not converge, a simpler model was tested, with the random component generating the smallest 

variances removed (Barr et al., 2013). We report regression coefficients (bs), standard errors (SEs), t 

values (for RTs) or z values (for accuracy rates), and corresponding p values of the optimal model. 

Accuracy Rates. The mean accuracy of the lexical decisions for all words was 94.7%, and the 

accuracy rates were larger than 80% for all participants. Because the mean accuracy of two words was 

less than 67%, their data were excluded from the following analyses4 . Both were low-frequency 

compound words, and one belonged to the high first component-word frequency condition, while the 

 
3 Models using raw data of RTs showed similar patterns of significance from the ones conducted on log-transformed 

data, and therefore, only the results for log-transformed RTs are reported. 
4 Words with accuracy lower than 0.67 may not be processed as words by readers although their word frequencies were 

not different significantly from other words. The two words are “协约”and“支流”. Models based on all words 

showed similar patterns of significance from the ones conducted on the trimmed data, and therefore, only the results for 

trimmed data are reported. 
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other belonged to the low first component-word frequency condition. The mean accuracy for the 

remaining words was 95.4%. The descriptive statistics and fixed-effect estimate from the GLMM are 

shown in Tables 5 and 6. The final model included random intercepts and slopes (i.e., whole-word 

frequency and the interaction) for subjects and random intercepts for items. The main effect of whole-

word frequency was significant, and accuracy was higher for compound words with high whole-word 

frequency than for those with low whole-word frequency (z = -6.30, p <.001). Neither the main effect 

of first component-word frequency or the interaction was significant (p = .966 and .608, respectively). 

RTs. Trials with incorrect responses were first excluded (4.6%), and RTs longer than 2,000 ms or 

shorter than 200 ms were excluded (0.1%). Finally, RTs beyond three standard deviations were 

excluded for each condition of each participant (3.1%). In total, this data exclusion procedure resulted 

in a loss of 7.8% of the data. The final model included random intercepts and slopes (i.e., whole-word 

frequency and component-word frequency) for subjects and random intercepts for items. The results 

of LMM showed significant main effects of whole-word frequency (t = 9.54, p <.001) and first 

component-word frequency (t = -2.11, p = .038) on RTs. The classic whole-word frequency effect was 

replicated in this study in a direction of facilitation in Chinese compound word recognition; 

participants identified high-frequency compound words more rapidly than low-frequency compound 

words. In contrast, the effect of the first component-word frequency was in a reverse direction, which 

means that the higher the word frequency of the first component of the compound word, the slower 

the recognition of the whole compound word. Furthermore, the interaction between whole-word 

frequency and first component-word frequency was not observed (t = 0.07, p = .946, see Table 6). 

Finally, we calculated Cohen’s drm to compare the effect sizes of whole-word and component-word 

frequency using the method recommended by Lakens (2013) for repeated-measures mean difference 



29 

 

effect size estimation5 . The results revealed a stronger effect of whole-word frequency than first 

component-word frequency (drm = -1.06 and 0.24, respectively). 

 

Table 5 

Descriptive Statistics of Accuracy Rates and RTs 

Condition Accuracy rates RTs (ms) 

Whole-word frequency Component-word frequency Mean SD Mean SD 

Medium 
High 0.98 0.12 614 120 

Low 0.98 0.13 598 110 

Low 
High 0.92 0.27 695 163 

Low 0.93 0.26 677 151 

 

Table 6 

Results of G/LMM for Accuracy Rates and RTs 

Measure Fixed Factors Estimate SE t/z p 

Accuracy rates 

Whole-word frequency -1.67 0.26 -6.30 <.001 

Component-word frequency -0.01 0.26 -0.04 .966 

Interaction 0.26 0.51 0.51 .608 

RTs 

Whole-word frequency 0.12 0.01 9.54 <.001 

Component-word frequency -0.03 0.01 -2.11 .038 

Interaction 0.002 0.02 0.07 .946 

Note. Interaction means the interaction between whole-word frequency and first component-word frequency. 

 

Experiment 2 

Nonwords in Experiment 1 were combined with two characters by randomizing the second 

 
5
 For ease of understanding, the effect size calculations here are consistent with those in Table 1. Negative values indicate 

facilitative effects and positive values indicate inhibitory effects, and larger absolute values indicate stronger effects. 
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characters of target words, which means the same character occurred once in the word context and 

once in the nonword context. This has the unintended consequence of priming the second occurrence 

of the same character, with unpredictable consequences for the lexical decision latency6. Experiment 

2 was designed to exclude this possibility. In Experiment 2, characters in nonwords were not characters 

that were used in target words. Given that our focus centered on the component-word frequency effects 

on word identification, we chose to exclusively manipulate first component-word frequency in a 

broader sample of compound words for Experiment 2. 

Method 

Participants. In Experiment 2, 35 native Chinese-speaking participants (21 females) from 

Mainland China with normal or corrected-to-normal vision were recruited online to participate in the 

experiment. Their ages ranged from 19 to 26 years. The number of observations per condition in this 

experiment was 1,750, closely matching the 1,716 observations per condition in Experiment 1. As 

stated previously, these numbers are comparable to the recommendations made by Brysbaert and 

Stevens (2018). 

Stimuli. First component-word frequency was manipulated and were divided into high (M = 73, 

range from 50–126 occurrence per million) or low (M = 1.8, range from 0.4–3 occurrence per million). 

The entire list of stimuli can be found in Appendix (Table B2). Whole-word frequency and other 

character properties were controlled across conditions (see Table 7). A total of 100 two-character 

compound words were selected, with 50 different words per condition. Another 100 two-character 

nonwords were used as fillers, of which the characters were not in the target words. 

 

 
6 We thank Sachiko Kinoshita and the editor for pointing out this problem of Experiment 1. 
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Table 7 

Properties of Stimuli in Experiment 2 

Component- 

Word 

frequency 

Whole-

word 

frequency 

 First component  Second component 

 

Number 

of 

Strokes 

Character 

frequency 

Component-

word 

frequency 

Family 

size 

 

Number 

of 

Strokes 

Character 

frequency 

Component-

word 

frequency 

Family 

size 

High 
5.3 

(5.4) 

 9.6 

(2.9) 

87 

(24) 

73 

(19) 

23 

(14) 

 8.3 

(3.0) 

436 

(530) 

153 

(251) 

90 

(84) 

Low 
6.6 

(6.5) 

 9.0 

(2.3) 

100 

(81) 

1.8 

(0.7) 

25 

(17) 

 8.3 

(2.9) 

529 

(812) 

170 

(461) 

74 

(66) 

F 1.10  1.16 1.18 704 0.40  -0.03 0.46 0.05 1.01 

p .30  .28 .28 <.001 .53  .97 .50 .83 .32 

η² .01  .01 .01 .88 .00  .00 .01 .00 .10 

Note. Standard deviations are presented in parentheses. Frequency (per million counts) was based on SUBTLEX-CH (Cai 

& Brysbaert, 2010).  

 

Apparatus. The same apparatus was used as in Experiment 1. 

Procedure. The same procedure was used as in Experiment 1. 

Transparency and Openness. The materials, raw data, and the code of analysis in R is publicly 

available at the Open Science Framework website 

(https://osf.io/cs9qv/?view_only=d3a690a906024821a6a22bb5374be10c). 

Results 

The same analysis processes were used as in Experiment 1. In all LMMs, component-word 

frequency was entered as contrast coded fixed factors (high was coded as -0.5 and low was coded as 

0.5). 

Accuracy Rates. The mean accuracy was 93.7%. The descriptive statistics and results of the 

GLMM are shown in Table 8. The final model included random intercepts for subjects and items. The 
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component-word frequency effect was significant (b = 0.53, SE = 0.20, z = 2.69, p = .007). When first 

component is of low word frequency, the whole compound word is identified more accurately than the 

high component-word-frequency condition. 

RTs. Approximately 8.0% of the trials were excluded using the same criterion as in Experiment 

1. The final model included random intercepts and slopes (i.e., component-word frequency) for 

subjects, and random intercepts for items. The results in Table 8 showed significant first component-

word frequency effect (b = -0.03, SE = 0.01, t = -2.28, p = .025), indicating that readers responded 

more rapidly to compound words containing lower-word-frequency first component. The effect size 

estimated in the same way as that in Experiment 1 showed a small effect of component-word frequency, 

Cohen’s drm = 0.24. The results replicated the inhibitory component-word frequency effects revealed 

Experiment 1, excluding the possibility that the effect was driven by the priming of repeated characters 

between words and non-words. 

 

Table 8 

Descriptive Statistics and Results of G/LMM of Accuracy Rates and RTs in Experiment 2 

 

Component-word frequency 

Accuracy rates RTs (ms) 

Mean SD Mean SD 

Descriptive Statistics High 0.92 0.06 650 74 

Low 0.95 0.04 633 72 

Results of G/LMM t/z 2.69 -2.28 

p .007 .025 

 

Discussion 

The results of two factor-designed experiments generally replicated the major finding of Study 1. 
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The results showed that it took longer to identify compound words containing high-word-frequency 

components than those containing low-word-frequency components. The interaction between whole-

word frequency and component-word frequency was not significant. These findings provided evidence 

to support the argument that component words of compound words compete with the whole word 

during word processing. 

General Discussion 

The present study examined how Chinese compound word are processed by analyzing two large-

scale databases and conducting two lexical decision experiments. In contrast to previous studies, we 

distinguished component-word frequency and character frequency when investigating how component 

properties affect compound word processing. 

In the present studies, we found two main effects. The first is the classical whole-word frequency 

effect, with shorter lexical decision latencies for high-frequency compound words. Another is 

component-word frequency effects, with longer reading times for compound words containing high-

frequency component words. The two frequency effects confirmed a prediction of CRM. When the 

model processes a compound word, both the whole word and the component words are activated and 

compete for a winner. The whole compound word wins most of the time because it receives more 

support from visual and character levels than any component words, so it will be identified as a word. 

CRM assumes that a high-frequency compound word takes less time to win than a low-frequency word, 

which is shown as the whole word frequency effect in the experiments. Meanwhile, the activation of 

embedded component words might cause some interference in the competition. CRM predicts that the 

activation of high-frequency component words is higher than that of low-frequency component words; 

thus, they cause more competition to the whole compound word. This stronger competition slows down 
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word identification and results in longer processing times. The finding of an inhibitory component-

word frequency effect is consistent with this prediction. 

Furthermore, the effect size of whole word frequency is larger than that of component-word 

frequency in both studies. Although their frequency ranges were different, these variables were 

standardized in the analysis of Study 1 and measured in the same situation in Experiment 1 of Study 

2. The finding of larger whole-word frequency effect aligns with the prediction of CRM, which predicts 

that the whole word usually wins the competition because the whole-word node is supported by 

bottom-up activation from more character nodes than its component words (i.e., one-character words). 

Therefore, the component words are inhibited by the whole compound word soon after being activated 

at the beginning of processing, while the whole compound word is long lived. This possibly makes the 

frequency effects of components either nonsignificant (as in previous studies, see Li et al., 2014; Ma 

et al., 2015; Rayner et al., 2007) or trivial compared to the whole-word frequency effects (as in the 

present study) and makes processing holistic-like in practice (Bai et al., 2008; Shen et al., 2017; Shen 

& Li, 2012; Yang et al., 2012; Zang et al., 2013; Zhou & Li, 2021). 

It is necessary to clarify that the competition-based view is different from the dual-route model 

where lexical access of component words and whole words take place in different routes (Caramazza 

et al., 1988; Pollatsek et al., 2000). In the dual-route model, words are accessed through the faster route 

of either the holistic or decomposition one, and component effects are considered as evidence for 

decomposition-then-composition. However, our current view posits that lexical processing of 

component words and whole words are simultaneous at the same level, predicting an inhibitory effect 

from component-word frequency because of competition. In short, we do not view compound word 

identification dichotomously but view it as an interactive activation-based competition among all 
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possible words. 

The findings of the present study might provide one solution to the discrepant findings in the 

literature regarding how character frequency affects word identification in Chinese reading. Some 

previous studies found a facilitative effect of character frequency on compound word processing (e.g., 

Peng et al., 1999; Wang & Peng, 1999; Yan et al., 2006), others found inhibitory effects (e.g., Tsang et 

al., 2018; Xiong et al., 2022; Yu et al., 2021), and still others found null effects (e.g., Cui et al., 2017; 

Li et al., 2014; Ma et al., 2015). As we argued in the Introduction, components of compound words 

may produce two opposite effects on Chinese compound word processing: a facilitative effect at the 

character level (Taft & Zhu, 1997) and an inhibitory effect at the word level (Li & Pollatsek, 2020). 

Consistent with these predictions, inhibitory component-word frequency effects of the first component 

were observed in two studies, while facilitative character frequency effects were observed in Study 1. 

The balance of these two effects can explain the mixed findings from previous studies, which only 

included character frequencies as variables without considering component-word frequencies (e.g., H. 

C. Chen et al., 2003; Tsang et al., 2018; Tse & Yap, 2018). Based on the results from the new analysis 

on the corpus data in Study 1 and the two experiments in Study 2, we argued that the key to solving 

this puzzling picture in the literature is to consider the effects of component words when theorizing 

Chinese compound word processing. Possibly, if target words differ greatly in character frequency but 

not in component-word frequency, a facilitative effect of character frequency on word recognition 

might be observed. However, if the components are of high word frequency in the high character 

frequency condition, an inhibitory effect might override the facilitative one. Meanwhile, this 

explanation is just one possibility causing the mixed results of character frequencies in previous studies 

and it does not exclude other possibilities. 
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Additionally, in Study 1, the interactions between whole-word frequency and component-word 

frequency were significant, suggesting that whole-word frequency is an essential determinant of 

component-word frequency effects and component-word frequency effects are stronger when the 

whole-word frequency is higher. However, the interaction was not replicated in Experiment 1 of Study 

2, an empirical study in which whole-word frequency and first component-word frequency were 

manipulated as category variables. In contrast, first component-word frequency showed inhibitory 

effects on the RTs of lexical decisions independent of compound word frequency. One probable reason 

for the absence of an interaction is that the range of whole word frequency is limited. It remains to be 

seen whether an experimentally manipulated component-word frequency effect would be smaller or 

non-existent for compounds words with high whole-word frequency. Note that despite not using the 

high-frequency words, the frequency range we selected in Experiment 1 covers 65% of all the two-

character words, suggesting that the competition pattern we observed occurs for most of the Chinese 

compound words. 

The results of Study 1 also showed that the effects of the first character and the second character 

were different to some degree. The frequency effects of the first component are more robust and 

stronger than those of the second component, which is consistent with previous studies showing similar 

patterns in Chinese compound word processing even when words were presented in isolation (Peng et 

al., 1994; Taft et al., 1999). Differences between the two characters of a word might be caused by 

reading direction. Because Chinese readers usually read from left to right so that their eyes usually 

move from left to right, the first character of a word may have some advantages over the second 

character during reading (Ma et al., 2014). However, considering that the frequency effects of the 

second component are not consistent in Study 1, significant in the analyses of CLP-Tse but not in those 
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of MELD-SCH, more empirical studies are needed to verify the frequency effects of the second 

component on Chinese compound word processing. Meanwhile, CLP-Tse is a dataset of traditional 

Chinese, while MELD-SCH is based on simple Chinese, so it is also possible that there are some 

differences between the lexical identifications in these two visually different Chinese. 

Inhibitory effects of component word frequency on compound word processing have also been 

observed in some alphabetic languages such as Basque and Vietnamese (Pham & Baayen, 2015; 

Vergara-Martínez et al., 2009). Most studies of English observed facilitative effects of morpheme 

frequency (Inhoff et al., 2008; Schmidtke et al., 2021). However, the effect is not always robust. For 

example, in a lexical decision task, when the second component was a high-frequency word, the 

frequency effect of first component was not significant (Juhasz et al., 2003). Moreover, in eye 

movement studies, Juhasz et al. (2013) also did not find significant first lexeme effects. Although 

studies of English compound words did not consistently observe component word frequency, none has 

reported inhibitory effects. Apparently, there are some cross-language differences regarding how 

component frequency affects compound word processing. The exact reasons for these differences are 

currently unclear, and further research is required to understand them.  

This raised a question that whether the mechanism of compound word processing proposed in the 

present study is specific to Chinese or is a universal approach for all writing systems. The unique 

properties of Chinese might affect compound word processing in the following ways. First, Chinese 

words are short, allowing readers to process a word within a single fixation. In contrast, longer 

compound words in alphabetic languages might need more fixations, preventing holistic processing. 

Second, because there are no explicit marks to demarcate words in Chinese, readers need decide which 

word each character belongs to. This may encourage competition between whole words and the 
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components. In contrast, for English compounds, the absence of whitespace may suggest that the 

embedded word is not to be identified separately, potentially reducing inhibitory effects. Finally, 

morphemes are salient in Chinese and likely to be activated early during processing. This might not 

happen as quickly in alphabetic languages if morpheme boundaries are not apparent. These differences 

suggest that compound word processing in Chinese might have unique properties compared to 

alphabetic writing systems. The linguistic experience could affect how readers process words 

(Traficante et al., 2018). Therefore, it is an interesting question regarding how well CRM explains 

word processing in alphabetic languages. 

One further question is whether the mechanism for processing compound words in a lexical 

decision task could be applied to natural sentence reading. On the one hand, multiple words are 

presented simultaneously without obvious word boundaries during natural reading. It is likely that the 

mechanism of compound word processing would be affected by the procedure of word segmentation 

during sentence reading. Zang et al. (2016) manipulated the lexical probability (i.e., the likelihood of 

a character being a single-character word vs. part of a two-character word) of the first component and 

the preview of the second component in a sentence reading study, with character frequency matched. 

They found when the first component was more likely to be a single-character word, the preview 

effects on the whole words reduced, indicating Chinese readers could use lexical probability cues for 

word segmentation during sentence reading. On the other hand, given that words are presented with 

contexts and readers might rely more on top-down information during reading, the influence of 

character frequency might be relatively weak (Cui et al., 2013; Cui et al., 2021; Li et al., 2014; Ma et 

al., 2015; Yan et al., 2006; Yu et al., 2021). Accordingly, words in a sentence might be processed 

essentially as psychological units and possibly induce no or little difficulty in segmentation for Chinese 
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readers (Bai et al., 2008). In sum, future research is crucial to determine the extent to which character 

frequency and component-word frequency serve as distinct factors in the mental lexicon of Chinese 

readers, as well as to assess the generalizability of compound word processing mechanisms across 

tasks. 

Similar to the results of the studies presenting words in isolation, previous sentence-reading 

studies tended to observe robust whole-word frequency effects and mixed character frequency effects. 

Recent studies have found inhibitory effects of character frequency on compound word processing 

during sentence reading (Cui et al., 2021; Xiong et al., 2022; Yu et al., 2021). Cui et al. (2021) 

explained the inhibitory first-character effect under the constraint hypothesis (Hyönä et al., 2004) based 

on the observation that morphological family members (number of words the character appears in) and 

first character frequency were strongly correlated. It was hypothesized that the fewer the 

morphological family members associated with the first character, the stronger constraint the first 

character has on the possible compound words. The constraint might be particularly useful when the 

whole compound word is low frequency. Yu et al. (2021), however, pointed out that family member 

sizes are mostly found to be facilitative in alphabetic languages (e.g., Dutch: Kuperman et al., 2009; 

English: Juhasz & Berkowitz, 2011; Finnish: Kuperman et al., 2008), as well as in Chinese (Yao et al., 

2022). Furthermore, when they analyzed only a subset of target words to equate family member size, 

the inhibitory effect of first character frequency was still present. They therefore refuted the constraint 

hypothesis. In the current research, when including family size into the analysis of Study 1, its effect 

on word identification was only significant in the analysis of CLP-Tse, in a direction of facilitation, 

but absent in the analysis of MELD-SCH (more details in Appendix Table A3). Notably, even when 

including family sizes, there is still facilitative character frequency and inhibitory component-word 
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frequency effects, consistent with initial findings. Instead, Yu et al. argued that the inhibitory character 

frequency effect reflects the heuristics Chinese readers use to perform word segmentation when 

reading multiple consecutive characters in a sentence, whereby the unfamiliarity from a low-frequency 

first character induces an inference of a one-character word and a short fixation. However, our current 

lexical-decision results imply that the inhibitory effect of the component does not necessarily emerge 

due to the need for segmentation because the targets were presented in isolation (also see Xiong et al., 

2022). We leave the question of generalization between single-word and sentence-reading paradigms 

to future studies where the effect of component-word frequency is explicitly examined. If the 

component-word frequency affects the eye-movement measures in the same way when controlling the 

character frequency, it will enhance the application of our theory in Chinese reading. 

Finally, we acknowledge the limitation that we did not consider semantic processing, although 

this is an integral part of compound word processing. Peng et al. (1999) found that character frequency 

effects were moderated by the semantic transparency of the whole word. To interpret this, compound 

words were divided into semantic transparent or opaque words in their model (not computationally 

implemented), and there were different types of connections between morpheme and word nodes 

depending on the transparency. Simply based on the measurements of RTs in lexical decision tasks, it 

is also difficult to discriminate the time courses or processing stages of different frequency effects on 

compound word identification. Considering the tasks in two studies were both lexical decisions, it is 

uncertain whether the results could be generalized to other tasks. Additionally, there are inevitably 

problems to be solved in explaining word processing in other languages because the competition-based 

word processing mechanism in CRM was targeted at specific properties of Chinese. In the future, 

further studies are needed to investigate these questions. However, for the present, we mainly focus on 
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the effects at the word level in Chinese compound word identification. 

Conclusion 

By analyzing two existing lexical decision databases and conducting empirical research using 

lexical decision tasks, the present study showed that whole-word properties and component 

properties affect word processing during Chinese reading. Specifically, facilitative whole-word 

frequency effects and inhibitory component-word frequency effects were observed in the analyses of 

previous corpus as well as the experiments with factorial design. These findings support a novel view 

of how compound words are processed in Chinese reading. According to this approach, both the 

whole compound word and the words formed by components are activated, and these words compete 

for a winner. Because compound words are supported by more character units than any component 

word, the whole word almost always wins the competition, resulting in the compound word being 

processed as a unit. Meanwhile, because the activated component words compete with the whole 

word, their properties also influence the time it needs to identify whole compound word. This new 

approach might explain the previous inconsistent findings about the effects of component frequency 

and highlight the importance of component words. 
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Appendix A 

Supplementary Analyses of the datasets in Study 1 

Figure A1 

Q-Q Plots and Residual Histogram Plots in Study 1 
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Table A1 

Inter-correlation Matrices among Linguistic Properties and the VIFs for Predictors in Study 1 

  

  

Whole-word 

frequency 

C1 

number of 

strokes 

C1 

character 

frequency 

C1 

component-

word 

frequency 

C2 

number of 

strokes 

C2 

character 

frequency 

C2 

component-

word 

frequency 

VIF 

Tsang 

et al. 

(2018) 

Whole-word frequency 1       1.21 

C1 number of strokes -0.05 1      1.22 

C1 character frequency 0.31 -0.41 1     4.66 

C1 component-word frequency 0.21 -0.36 0.87 1    4.16 

C2 number of strokes -0.06 0.04 -0.04 -0.04 1   1.18 

C2 character frequency 0.27 -0.06 0.16 0.13 -0.38 1  3.68 

C2 component-word frequency 0.16 -0.04 0.10 0.12 -0.31 0.83 1 3.33 

Tse et 

al. 

(2017) 

Whole-word frequency 1       1.15 

C1 number of strokes -0.06 1      1.11 

C1 character frequency 0.27 -0.32 1     3.90 

C1 component-word frequency 0.20 -0.30 0.85 1    3.72 

C2 number of strokes -0.07 0.01 -0.01 -0.02 1   1.12 

C2 character frequency 0.26 -0.02 0.12 0.10 -0.32 1  3.59 

C2 component-word frequency 0.18 -0.01 0.08 0.10 -0.28 0.83 1 3.37 

Note. C1 represents the first component in compound words, and C2 represents the second component in compound words. Frequencies (per million counts) were based on 

SUBTLEX-CH (Cai & Brysbaert, 2010). Values in bold indicate p <.01 (two-tailed). 
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Table A2 

Regression Models Including Interactions for RTs in Study 1 

 
Predictors 

beta 95% Confidence Interval t p 

 Lower Upper 

MELD-SCH  

(Tsang et al., 

2018) 

Whole word Whole-word frequency -0.078  -0.080  -0.076  -69.48  <.001 

First component 

Number of strokes 0.005  0.003  0.008  5.16  <.001 

Character frequency -0.006  -0.010  -0.002  -2.70  0.007  

Component-word frequency 0.010  0.006  0.014  5.05  <.001 

Character frequency:Whole-word frequency 0.001  -0.003  0.005  0.63  0.527  

Component-word frequency:Whole-word frequency 0.004  0.000  0.008  2.23  0.026  

Second component 

Number of strokes 0.006  0.004  0.008  5.57  <.001 

Character frequency 0.002  -0.001  0.006  1.31  0.190  

Component-word frequency 0.000  -0.003  0.004  0.13  0.900  

Character frequency:Whole-word frequency 0.004  0.000  0.007  2.01  0.044  

Component-word frequency:Whole-word frequency 0.004  0.000  0.007  2.14  0.033  

CLP-Tse 

(Tse et al., 

2017) 

Whole word Whole-word frequency -0.054  -0.056  -0.053  -93.38  <.001 

First component 

Number of strokes 0.004  0.003  0.005  6.91  <.001 

Character frequency -0.010  -0.012  -0.008  -9.49  <.001 

Component-word frequency 0.008  0.006  0.010  7.57  <.001 

Character frequency:Whole-word frequency 0.001  -0.001  0.003  0.74  0.457  

Component-word frequency:Whole-word frequency 0.003  0.001  0.005  3.06  0.002  

Second component 

Number of strokes 0.004  0.003  0.005  7.42  <.001 

Character frequency -0.007  -0.009  -0.005  -6.75  <.001 

Component-word frequency 0.005  0.004  0.007  5.69  <.001 

Character frequency:Whole-word frequency 0.004  0.002  0.006  4.05  <.001  

Component-word frequency:Whole-word frequency 0.000  -0.002  0.002  0.20  0.839  
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Table A3 

Regression Models Including Family Size for RTs 

 
Predictors 

beta 95% Confidence Interval t p 

 Lower Upper 

MELD-SCH  

(Tsang et al., 

2018) 

Whole word Whole-word frequency -.075 -.078 -.073 -70.10 <.001 

First component 

Number of strokes .005 .003 .007 4.43 <.001 

Character frequency -.007 -.011 -.003 -3.26 .001 

Component-word frequency .012 .008 .016 6.22 <.001 

Family size -.002 -.004 .001 -1.51 .131 

Second component 

Number of strokes .006 .003 .008 5.04 <.001 

Character frequency .001 -.003 .005 0.49 .627 

Component-word frequency .002 -.001 .006 1.22 .222 

Family size -.001 -.003 .002 -0.37 .709 

CLP-Tse 

(Tse et al., 

2017) 

Whole word Whole-word frequency -.053 -.054 -.052 -94.28 <.001 

First component 

Number of strokes .003 .002 .004 5.70 <.001 

Character frequency -.010 -.012 -.007 -8.77 <.001 

Component-word frequency .009 .007 .011 8.88 <.001 

Family size -.002 -.004 -.001 -3.04 .002 

Second component 

Number of strokes .003 .002 .005 6.15 <.001 

Character frequency -.006 -.008 -.004 -5.87 <.001 

Component-word frequency .006 .004 .008 6.51 <.001 

Family size -.002 -.003 -.001 -2.94 .003 
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Appendix B 

Table B1 

Stimuli used in Experiment 1 of Study 2 

High whole-word frequency Low whole-word frequency 

High component-word 

frequency 

Low component-word 

frequency 

High component-word 

frequency 

Low component-word 

frequency 

狂欢 叛徒 操办 宣讲 

付出 释放 支流 姑父 

急救 奋斗 组团 暂定 

冲浪 概念 冒失 良药 

糖果 祖父 读报 遗照 

圈套 统治 剩饭 资质 

追求 习惯 编导 诞辰 

抽烟 历史 按压 承包 

座位 愚蠢 骗术 协约 

元素 销售 哭闹 爵位 

蓝色 屠杀 祝寿 委任 

搭档 卧室 抢占 授课 

封锁 议员 吵嚷 息怒 

项目 规矩 左耳 溶剂 

透露 策略 赌债 荒漠 

撞击 态度 课表 扩充 

搬家 危机 赚取 汽船 

抢劫 频道 树根 迎面 

右边 诚实 笔画 估测 

骑士 污染 拍击 恭贺 

签字 赋予 借条 适度 

招呼 究竟 菜地 政局 
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Table B2 

Stimuli used in Experiment 2 of Study 2 

High first component-word frequency condition Low first component-word frequency condition 

遍布 透视 谅解 奸细 

扔掉 踢球 概念 援军 

替身 抢夺 资源 巫师 

搬家 鸟笼 察觉 农业 

挂念 爽约 规划 仰慕 

砸烂 圈套 态度 陆军 

借助 项链 迎接 惧怕 

输血 吵闹 阻碍 诱导 

座机 八卦 危害 阁楼 

群体 抽奖 释怀 辱骂 

烧毁 猪油 扰乱 矩阵 

锁骨 赚钱 政策 符号 

副本 编码 务必 牧场 

吻合 爬行 毫米 掩埋 

烂泥 赌徒 适宜 晓得 

躲避 吐露 遗留 欺负 

逼迫 仍旧 承载 益处 

欠债 寄托 议论 伪善 

封杀 拖延 姑妈 欣慰 

臭气 吹牛 委员 邻近 

疼爱 层面 统领 盟友 

朝圣 挖苦 诞生 侵略 

秀发 招供 描写 祈求 

累积 墙纸 荒废 固体 

盯住 搭乘 卧底 慈爱 

 


